skip to main content


Search for: All records

Creators/Authors contains: "Yan, Shaohui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Bimetallic nanocrystals (NCs), associated with various surface functions such as ligand effect, ensemble effect, and strain effect, exhibit superior electrocatalytic properties. The stress‐induced surface strain effect can alter binding strength between the surface active sites and reactants as well as their intermediates, and the electrochemical performance of bimetallic NCs can be significantly facilitated by the lattice‐strain modification via their morphologies, sizes, shell‐thickness, surface defectiveness as well as compositions. In this review, an overview of fundamental principles, characterization techniques, and quantitative determination of the surface lattice strain is provided. Various strategies and synthesis efforts on creating lattice‐strain‐engineered bimetallic NCs, including the de‐alloying process, atomic layer‐by‐layer deposition, thermal treatment evolution, one‐pot synthesis, and other efforts are also discussed. It is further outlined how the lattice strain effect promotes electrochemical catalysis through the selected case studies. The reactions on oxygen reduction reaction, small molecular oxidation, water splitting reaction, and electrochemical carbon dioxide reduction reactions are focused. In particular, studies of lattice strain arisen from core–shell nanostructure and defectiveness are highlighted. Lastly, the potential challenges are summarized and the prospects of lattice‐strain‐based engineering on bimetallic nanocatalysts with suggestion and guidance of the future electrocatalyst design are envisioned.

     
    more » « less
  2. Abstract

    Fabrication of 3dmetal‐based core@shell nanocatalysts with engineered Pt‐surfaces provides an effective approach for improving the catalytic performance. The challenges in such preparation include shape control of the 3dmetallic cores and thickness control of the Pt‐based shells. Herein, we report a colloidal seed‐mediated method to prepare octahedral CuNi@Pt‐Cu core@shell nanocrystals using CuNi octahedral cores as the template. By precisely controlling the synthesis conditions including the deposition rate and diffusion rate of the shell‐formation through tuning the capping ligand, reaction temperature, and heating rate, uniform Pt‐based shells can be achieved with a thickness of <1 nm. The resultant carbon‐supported CuNi@Pt‐Cu core@shell nano‐octahedra showed superior activity in electrochemical methanol oxidation reaction (MOR) compared with the commercial Pt/C catalysts and carbon‐supported CuNi@Pt‐Cu nano‐polyhedron counterparts.

     
    more » « less
  3. Abstract

    Fabrication of 3dmetal‐based core@shell nanocatalysts with engineered Pt‐surfaces provides an effective approach for improving the catalytic performance. The challenges in such preparation include shape control of the 3dmetallic cores and thickness control of the Pt‐based shells. Herein, we report a colloidal seed‐mediated method to prepare octahedral CuNi@Pt‐Cu core@shell nanocrystals using CuNi octahedral cores as the template. By precisely controlling the synthesis conditions including the deposition rate and diffusion rate of the shell‐formation through tuning the capping ligand, reaction temperature, and heating rate, uniform Pt‐based shells can be achieved with a thickness of <1 nm. The resultant carbon‐supported CuNi@Pt‐Cu core@shell nano‐octahedra showed superior activity in electrochemical methanol oxidation reaction (MOR) compared with the commercial Pt/C catalysts and carbon‐supported CuNi@Pt‐Cu nano‐polyhedron counterparts.

     
    more » « less